Skip to main content

Conversational AI Playbook

 Roadmap for Conversational AI


Owing to the technological development and changes in the customer

behaviour, e-commerce has developed over different levels of maturity in

recent years. The challenge for companies is to recognise relevant technological and market trends and assess them accordingly. 


Companies are currently facing the challenge of achieving the next level

of maturity—so-called Conversational Commerce. This level of maturity

seems desirable at present because current trends could revolutionise the

sales sector. This means that those who proceed slowly with the implementation of Conversational Commerce could lose customers to competitors. On

the other hand, companies could, for example, benefit from public attention

by incorporating bots at an early stage (Fig. 4.8).

Thereby, the leap to Conversational Commerce does not represent a gradual, but a fundamental advancement of e-commerce. This is not only about

another voice-controlled touch point. It is much rather about a new ecosystem which automatically initiates and coordinates ordering processes driven

by customers and situations. Intelligent assistants either follow the instructions of consumers or recognise the need to take action by themselves, e.g.

reordering of detergents or travel booking according to the appointments

diary.

However, it is also decisive that the transition to Conversational

Commerce is well thought out and planned. One possibility to do this sys-

tematically is the DM3 model presented in Part II AI Business: Framework

and Maturity Model

Comments

Popular posts from this blog

Customer Engagement with Chatbots and Collaboration Bots: Methods, Chances and Risks of the Use of Bots in Service and Marketing

 Relevance and Potential of Bots for Customer  Obtaining information, flight check-ins or keeping a diary of one’s own diet—all of this is possible in dialogue today. Customers can ask questions via Messenger or WhatsApp or initiate processes. This service is comfortable for the customer, available at all times via mobile and promises fast answers or smooth problem-solving. A meanwhile strongly increasing number of companies is already relying on this means of contact and the figures on chat usage speak in favour of this means supplementing or even replacing many apps and web offers in the future. The reasons for this are manifold. Figures of the online magazine Business Insider 1 reveal a clear develop- ment away from the public post to the use of private messaging services such as Facebook Messenger or WhatsApp. Facebook meanwhile has a user base of around 1.7 billion people worldwide; 1.1 billion people use WhatsApp, and Twitter can nevertheless still record 310 million us...

Robot Journalism Is Becoming Creative

 Algorithms are able to automatically search the Web for information, pool it and create a readable piece of writing. In addition, data-based reports in the area of sport, the weather or finances are already frequently created automat- ically today. Recently, for example, merely a few minutes after Apple had announced their latest quarterly figures, there was a report by the news agency Associated Press (AP): “Apple tops Street 1Q forecasts”. The financial report deals solely with the mere financial figures, without any human assistance whatsoever. Yet, AP was able to publish their report entirely via AI in line with the AP guidelines. For this purpose, AP launched their corresponding platform Wordsmith at the beginning of 2016, which automatically creates more than 3000 of such financial reports every quarter, and which are pub- lished fast and accurately. It is no longer that easy to distinguish between whether an algorithm or a human has written a text. Another exception of rece...

A Bluffer’s Guide to AI, Algorithmics and Big Data

 Big Data—More Than “Big” A few years ago, the keyword big data resounded throughout the land. What is meant is the emergence and the analysis of huge amounts of data that is generated by the spreading of the Internet, social media, the increasing number of built-in sensors and the Internet of Things, etc. The phenomenon of large amounts of data is not new. Customer and credit card sensors at the point of sale, product identification via barcodes or RFID as well as the GPS positioning system have been producing large amounts of data for a long time. Likewise, the analysis of unstructured data, in the shape of business reports, e-mails, web form free texts or customer surveys, for example, is frequently part of internal analyses. Yet, what is new about the amounts of data falling under the term “big data” that has attracted so much attention recently? Of course, the amount of data avail- able through the Internet of Things (Industry 4.0), through mobile devices and social media has ...